

Next Generation Transparency

Vision

30 Process Steps For F-16 Canopy

>20% Scrap Rate After Final Optical Tests

9 Steps for Frameless

Ability to Vary Thickness Saves Weight

Planning / Definition

Goals

- Reduce Production Cost by 80%
- Reduce Weight by 20%
- Reduce Parts Count by 90%
- Reduce Changeout Time by 85%

Payoffs

- Pristine Optics Enable Helmet
 Mounted Display Integration
- Precisely Repeatable Geometry
 Enables LO
- Reduces JSF Total Cost of Ownership by \$1.3B

We Can Do It Because

- Two Prior Phases of Work Have Demonstrated
 - Integrated Computer Aided Design Tools
 - Low Pressure Injection Molding Manufacturing Process

<u>Customers</u>: Boeing JSF, F-22, F-15

Needs / Deficiencies : Reduced
Support M2, High Reliability LG3,
Efficient Turn Times LG6,
Extended Preventive
Maintenance Intervals LG9,
Improved R&M LG7

ATD Ranking: Cat 1

Next Generation Transparency

FY01 FY02

Objectives

- Demonstrate integration of all technologies required to meet constructed set of next generation transparency system requirements
- Develop initial dual use commercialization plan for autos, commercial aircraft and helicopters

Technical Challenges

TASKS/SCHEDULES

- Specification of 'form' for surface of steel injection molding tool required for optical performance
- Development of explosive severance method for emergency crew escape within human acoustic tolerance levels

Approach

- Employ Industry "Best Practices" Tailored for S&T
- Driven by System Customer Technology Assessment
- Align NGT Program Exit Criteria with Customer Entrance Criteria
- Employ Customer Cost Models
- Demonstrate Full Scale Manufacturing Cost to Verify Affordability
- Fabricate Full Scale Articles to Verify Producibility

TASK	FY98	FY99	FY00

Requirements Definition

Element Mold / Test

Final Design

Transparency Coating / Test

Full Scale Manufacturing

Major Milestones

- 1/01 Full Scale System Design
- 3/01 Full Scale Injection Molding Tool
- 1/02 Full Scale Demonstration Articles
- 2/02 Flight Worthiness Qualification

Contribution to Technical Objective(s)

- 550 knot 4 lb Bird Impact Protection
- Metrology accurate to within 10 millionths in. from specified 'form' of the steel tool surface
- Conformal compound curvature lapping tools able to bridge over at least 3 in. on tool surface

NGT Risk Reduction Requirements as Perceived by Boeing JSF Program Office

- 1. Optics Addressing with Deep Optical Element Part
- 2. Explosive Severance for Through the Canopy Escape Successfully completed three full scale demonstrations with YF-22 canopy articles
- 3. Manufacturing Scale Up Final design for full scale demo article to be molded next year nearly complete
- 4. Structural Integrity Sill element articles tested to assess a number of mechanical attachment / seal concepts

- Progress to date acceptable to Boeing JSF
- Work in progress to meet JSF optical requirements
- Principal remaining risk perceived by Boeing JSF

Deep Optical Element Part Definition

- Will Validate Injection Mold Process
- Will Validate New Tool Manufacturing Processes Being Developed
- Will Verify Optic Requirements Can be Achieved and Repeated

Deep Optical Element Part Injection Molding Trials

Injection Molded
Deep Optical Element Part
Articles Exceed F-16 and
F-22 Specifications
for Optical Distortion

'Orange Peel' Texture
Must Be Eliminated to
Bring Canopies to Flight Quality

Optical Gridboard Test Setup

F15E Windshield

Deep Optical Element Part

Optical Shadowgraph Test Setup

F-15E Windshield

Deep Optical Element Part

NGT Risk Reduction Requirements as Perceived by Boeing JSF Program Office

- 1. Optics Addressing with Deep Optical Element Part
- Explosive Severance for Through the Canopy Escape - Successfully completed three full scale demonstrations with YF-22 canopy articles
- Manufacturing Scale Up Final design for full scale demo article to be molded next year nearly complete
- 4. Structural Integrity Sill element articles tested to assess a number of mechanical attachment / seal concepts

- Progress to date acceptable to Boeing JSF
- Work in progress to meet JSF optical requirements
- Principal remaining risk perceived by Boeing JSF

Explosive Severance Testing of YF-22 Monolithic Polycarbonate Canopy

NGT Risk Reduction Requirements as Perceived by Boeing JSF Program Office

- 1. Optics Addressing with Deep Optical Element Part
- 2. Explosive Severance for Through the Canopy Escape - Successfully completed three full scale demonstrations with YF-22 canopy articles
- 3. Manufacturing Scale Up Final design for full scale demo article to be molded next year nearly complete
- 4. Structural Integrity Sill element articles tested to assess a number of mechanical attachment / seal concepts

- Progress to date acceptable to Boeing JSF
- Work in progress to meet JSF optical requirements
- Principal remaining risk perceived by Boeing JSF

Full Scale Development Article (FSDA)

10 Inserts Required: 6 for latching 4 for actuation

Note: Canopy shown in tool orientation.

FSDA Latch System

FSDA Latch System Detail

NGT Risk Reduction Requirements as Perceived by Boeing JSF Program Office

- 1. Optics Addressing with Deep Optical Element Part
- 2. Explosive Severance for Through the Canopy Escape - Successfully completed three full scale demonstrations with YF-22 canopy articles
- 3. Manufacturing Scale Up Final design for full scale demo article to be molded next year nearly complete
- Structural Integrity Sill element articles tested to assess a number of mechanical attachment / seal concepts

- Progress to date acceptable to Boeing JSF
- Work in progress to meet JSF optical requirements
- Principal remaining risk perceived by Boeing JSF

Sill Element Articles

Preliminary Attachment Analysis

→ Over 20 Latch and Hinge
 Concepts Developed
 → Selected 5 most promising
 concepts for further
 development in task 2

15 Inch Spacing 8.85 psi Pressure Vertical Load Only

Overmolded Latch Insert - 2,200 Lbs Applied

Correlation of Sill Analysis and Latch Tests

Tests Will Determine the Initial Failure and Pull-Out of the Latches

Transition / Benefits

TTP: HQ AFMC (JSF)

HQ ACC (JSF)

JSF JPO

F-15 SPO

F-15 DSO

F-22 SPO

ROI:

Affordability:

AFRL Affordability Program

Baselined for:

Boeing JSF

MOU: AFRL/VA & WR-ALC/LF